Prophets or
Evolution - An LDS Perspective Chapter 27 The
Probability of Evolution "A statistician is a person who
stands in a bucket of ice water, sticks their head in an over and says: 'on
average, I feel fine!'" K. Dunnigan Gene Complexes In prior
chapters we talked about genes and DNA, among other things. While a "gene" is a template to
make a protein, a "gene complex" is a gene plus all of the other sections of DNA which are needed in
order for this gene to be converted into a protein and for the protein to be placed into the proper position inside
the cell, etc. A gene
would be useless without the rest of the gene complex. No one
really knows what the average number of nucleotide pairs (generally just
referred to as "nucleotides") are in the average "gene complex." In the book: Genetic Entropy & The Mystery of the
Genome, by Dr. Sanford, there is a clue (what he calls a "whole
gene" is called a "gene complex" in this book): "While only a small fraction of
the [DNA] directly encodes for proteins, every protein-encoding sequence is
embedded within other functional sequences that regulate the expression of such
proteins. This includes promoters,
enhancers, introns, leader sequences, training sequences, and sequences
affecting regional folding and DNA architecture ... While a typical
protein-coding sequence may only be 3,000 nucleotides long or less, the typical
'whole gene'[i.e. gene complex] that controls the expression of that protein
can be in the range of 50,000 nucleotides long." Genetic Entropy & The Mystery of the Genome, page 38 The numbers
he quotes are for humans. In this
chapter it will be assumed that the average "gene complex" for human
beings, and for other very advanced animals, is 15,000 nucleotides. This number is just a guess since no one
really has a clue what the exact number is. Before
getting into human evolution, let us apply the concept of "gene
complex" to the "first living cell." The Probability of the
"First Living Cell" Every gene
of the "first living cell" had to form totally by random mutations of
amino acids or nucleotides. There were
no prior living cells (by definition) from which to serve as a pattern for the
ordering of its amino acids or nucleotides. To
understand what the totally random formation of nucleotides is like, let us
talk about Shakespeare. Suppose we put
Shakespeare's King Henry VIII play into a computer and then scrambled the
letters up randomly (we will also scramble up the spaces between words). Then, suppose we isolated 900 of these randomly
generated letters and spaces. This is
what the scrambled King Henry VIII might look like (note: a period ('.') is
really a space in this list): .gibmmeg.signrryd.uet..mrhbhcro..efeul.feoe.ewe.li.befubl.ne k.ekenlhinat.oaet.hwde.trmtrlev..t.eluttl.r.hfdsepilrsafcltt tv.esewes.y.holgo.nlialywlggtrd.a..r.lhcm..juldagute.imtkckh .ooat..hrviesl.maablhe....asohf.a.e.i.r.nwnnnooolasia.atordw yhviondseabdme.ntonlmnfor.ya.livyyceae..m.ii.o..aoaactliahtr satythhrcwnrro.re.rca.anlitdntdtmihleosseiveammouweesrrtafli peeittehfrnre..teyl..eiso.bytrk.dhcaemoigeieip.ut.oeymnm.nyu sipseoo...othcttyeh..hbuaecsysesrus.rs.yaa..ly.tttrte.yihwra m.cet.dolwdeen..keiehi.bannu.irwa.le.teotli.snot...dmluc.adf iiocehdgdt.r.wo.aamr.w.aioisehh.r.ek.gtiigreaies..c.pohpnots .ncyl...reauidhtesa.itthenldts.ioak.euwbieat.ionerk.otiftyr. o.h.gtfhtnom..sesai....dgawutedie.on.dnechtua..pdertntar.ete .noriehamehooevsedaiafsooi.mw.otlhistdm.s.e..aeh.ll.dkesuaa. h.eosrdgye.dtesbctsoernlnsoacs.tanoyurhh..nwnhe.tdpako.tkyaa aceehfcgt.hnmireds.ensi.dyinrwn.ohh.whofe.e.wcra.srt.yoktean The gene
complexes of the "first living cell" did not have viable patterns of
nucleotides to serve as a pattern, thus the above attempt to replicate
Shakespeare, from scratch, is a visual example of what the DNA of the
"first living cell" would have looked like if we could
"read" DNA as easily as we could read Shakespeare. In other
words, the first attempt to create a DNA strand for the "first living
cell" would have been total gibberish because there was no prior pattern
or ordering from which to pull nucleotides. What if we
randomly modified pure gibberish? I hope
you understand that if you take gibberish, and randomly mutate it with more
gibberish, you will still have gibberish. So what
mechanism converted pure gibberish into a viable DNA strand for the "first
living cell?" There was no such
mechanism because there was no life on this earth prior to the "first
living cell." The
important thing to note is that there is no intelligence in the above
Shakespeare rearrangement of its letters. Actually,
the above chart was generated by random numbers, but the random numbers were
"weighted" by the exact proportion of letters in Shakespeare's
play. For example, a letter of the
alphabet that appeared very rarely in the play would appear very rarely in a
"weighted" or "biased" randomly generated listing. You won't
get a better grade in literature class by reading thousands of pages of
randomly generated letters of the alphabet, even when they are
"weighted" by the actual proportion of each letter in the actual
play. Likewise,
when we randomly scramble nucleotides, we would not expect to have a sequence
of nucleotides which would provide any "information" or
"intelligence" which would be useful to the "first living cell." A scrambled;
or randomly put together sequence of nucleotides; would not be expected to make
a viable gene complex any more than a scrambled King Henry VIII play would tell
us much about who King Henry VIII was and what his part was in the play. The play was named after him so you can
assume he was one of the main characters (I suppose most people would consider
him a villain, but others might consider him to be a role model). In addition
to randomness, there was no "survival of the fittest" in creating the
"first living cell," meaning there were no intermediate semi-live
cells which would provide a clue as to what the nucleotide sequences should
look like. Chemical Issues - Binding
Sites Proteins
are nothing but a long string of amino acids.
However, the amino acids need to be chemically bound together and then "folded"
so that they form a shape so that they can be functional to the cell, even in
the "first living cell." Let us
assume there was a "protein
structure" in the "first living cell" which needed 50
different proteins (i.e. 50 different genes would be used to make 50 different proteins,
and then the 50 different proteins were folded together make one very large protein structure). Physically,
the 50 different proteins must "fit together" much like you would
build a toy robot using several different kinds of Lego® building blocks and fit the pieces together. For example, the toy robot may have 15
"subsystems," where each of the "subsystems" are made of several
or many different blocks, and where the sum total of the 15
"subsystems" or "structures" makes the complete toy robot. With this
analogy, the "subsystems" are the protein
structures and the individual building blocks are individual proteins. But such a
concept is only half the problem for the "first living cell." Unlike
building a toy robot, individual amino acids, from different proteins in the protein
structure, must "stick" or "bind" to each other at certain
locations so that the entire protein structure is strong. This would be like gluing the Lego® building blocks together at certain points so it could be
carried to another room. But with living
structures, some sections of the proteins in a protein structure in a cell must
repel each other. There are no building
blocks that do that. What this
means is that not only must the 50 different proteins (that form one protein
structure) have shapes that fit together "like a complex glove,"
certain amino acids (in different proteins in the protein structure) must have very
specific amino acids, in exactly the
right place, so that some of the 50 protein parts "stick" to
each other or repel each other, etc. Thus,
proteins not only must have the right amino acids in the right places in order
for the proteins to fold in the right places, there must also be just the right
amino acids in just the right places so the proteins with bind together, will
repel each other, will repel water, will attract water, and so on. Designing complex protein structures is an
insanely complex process. The focus
of the book: The Edge of Evolution, by Dr. Michael J. Behe, totally
disproves the theory of evolution by talking about "binding
sites." His claim is that it is
impossible that random mutations of nucleotides could produce enough binding sites
to create a single complex protein structure.
He is right, it is a superb book.
However, like his other book, his "Edge" book is not very
popular among the evolutionists. Probability and the First
Living Cell Let us
assume the "first living cell" had 300 gene complexes, with an
average length of 3,000 nucleotides (or nucleotide pairs). Human gene complexes are far more
complicated, and longer, than the gene complexes of the "first living
cell" (if such a cell ever existed). Now let us
assume the probability of a random
permutation of 3,000 nucleotides, being able to create a gene complex
for the "first living cell," was 10‑5. This number is ridiculously generous to the
theory of evolution (i.e. the real probability is much, much less than that). Thus, we
have a probability that an RNA or DNA strand for the "first living
cell" would have a viable permutation of nucleotides is: 10(‑5x300)
which is equal to 10‑1,500.
The "‑5" is the probability of a single new gene complex
forming from a randomly generated permutation of 3,000 nucleotides; and the 300
is the number of gene complexes which must be made. Using the
above example, 50 of the 300 gene complexes would be used to create one protein
structure. But even
the above probability of 10‑1,500 ignores a lot of things, such
as the viability of different combinations
of proteins (remember, proteins must fit together, thus just having a bunch
of proteins doesn't help at all, they must be a "set" of proteins
which have very specific shapes and have specific amino acids in just the right
places), but we will use the above numbers. Remember,
10‑100 is an impossible probability. A probability of 10‑500 is
an insane probability because it is 10400 times smaller than an impossible probability. Now we are
talking about a number which is 101,000 times smaller than an insane probability (i.e. 10(1,500‑500)
equals 101,000). Randomly Creating a
"First Living Cell" in a Lab Now let us
assume a group of scientists claimed that they used a randomly generated DNA or RNA strand of 900,000 nucleotides,
and ended up creating life from non-life.
The "life" would include at least 300 very complex gene
complexes (i.e. the proteins made from the gene complexes are mainly used to
create protein structures). 50 of them
are assumed to create one of the key protein structures inside the "first
living cell." Would you
believe the scientists? Note that in the
above paragraph is the phrase: "randomly generated DNA or RNA." If they carefully designed the order of the
nucleotides for the DNA of a "first living cell;" good for
them, they should win the Nobel Prize (and no doubt they would). But in this
case the scientists are claiming that they used a totally random sequence of nucleotides to simulate true
evolution to order the amino acids and proteins necessary to create life from
non-life. They claimed they were
simulating the pre-biotic world. Should you
believe these scientists? No, you should
not believe them. They are trying to
deceive you. It is not the accumulation of 900,000 amino acids which is the
problem (though this is actually a very severe problem because amino acids do
not chemically bind to each other); rather it
is the permutation of nucleotides which is the problem. Even though
there would be many successful permutations of nucleotides which would create a
living cell; even taking this into account, if these scientists had had a
thousand failures, the chances of a success would still be 10‑1,497. Simply put, such a claim would be a clear case of fraud and deceit. The point
is that in nature, the same statistics apply.
Not only would you not believe the scientists if they said they randomly
created a "first living cell," you would also not believe them if
they said nature randomly created a "first living cell" by using
random mutations. Building a New Species
Randomly Let us, for
the sake of argument, assume that the average gene complex, for very advanced
animals and plants, including humans, consists of 15,000 nucleotides (i.e.
"nucleotide pairs"). Dr. Sanford
says they can be as large as 50,000 nucleotides (i.e. "nucleotide
pairs"). By the way,
Dr. Sanford's book is one of the best sources for understanding genetic
entropy. Genetic entropy is, by itself, an absolutely superb evidence that the theory of evolution
cannot be true as will be seen later. But let us assume
that in the "evolution" from the first complex animal (an
"animal" which had circulating blood or some other circulating fluid)
to human DNA, that the average
size of a gene complex was only 5,000 genes.
This is an average for a lot of different species, some of which were
much simpler than human DNA. There are
exactly 45,000 different ways that a sequence of 5,000 nucleotides
can be ordered (remember, each way they can be uniquely ordered is called a
"permutation"). Converting
from base 4 to base 10, this number is approximately 103,000. This number is about 102,920 times
larger than the number of atoms in our Universe and it represents the number of
permutations in just one gene complex. Once the
"first living cell" was alive; its DNA needed to be mutated to make
new species of single-celled animals. Eventually,
simple complex animals needed
to be formed. Considering the
"evolution" from the first complex animal to human DNA, do you think
the probability of "evolution" got easier or harder as time passed,
speaking from a probability standpoint? Well, it
got harder, much harder. From the first
complex animal (which was an ancestor of humans according to the theory of
evolution), many, many species were needed before humans could
"evolve" into existence. In this
book it will be assumed there were 3,000 different species, meaning
"ancestor species" of humans, meaning different species of animals
which were ancestors of humans and were complex species (i.e. some fluid
circulated). First, we
need to analyze how a single new species could "evolve" from an
existing species. Random
mutations (in this context where viable DNA already existed) are events that
occur to an existing species
(starting with the "first living cell," but actually we will start
with the first complex animal which is an ancestor of humans - meaning one of
our "ancestor species"). Remember, an
"ancestor species" is a species from which we are descended on our
phylogenetic tree or evolutionary tree (assuming the theory of evolution is
true for a moment). To create a
single new species, from an existing species, we will take the DNA of an
existing species, and 1) Randomly
copy one or more DNA strands from an existing species and place this copy
somewhere else on the DNA (other options will be discussed in later chapters); 2) Randomly
mutate some of the nucleotides (i.e. randomly change one nucleotide into
another nucleotide, randomly add nucleotides or randomly delete nucleotides) which
were copied from the DNA of the existing species; and 3) Randomly
mutate (add, change or delete) some of the nucleotides of the DNA of the
existing species which were not part of the copied DNA segments (e.g. for the
nucleotides involved in the morphing of the embryo algorithms); and A single gene
complex of a new species would likely consist of about 5,000 randomly chosen nucleotides, as
mentioned above. A "gene complex"
is very specialized for a specific
type of animal or plant. All mutations
must be effective for the specific type of animal or plant they occur inside
of. We must
remember that each animal or plant has a very sophisticated set of highly
coordinated functions. In other words,
you cannot take a rat liver and put it in a horse. The horse liver must be compatible with the
other organs in a horse. All the
computers in the world, in a trillion years, could not calculate the
probability of accidentally creating a single viable gene complex for a
specific type of animal. So we have
to use some common sense (or use sampling).
It will be assumed the probability of randomly mutating (i.e. copying, changing,
deleting and adding nucleotides), which will result in the formation of a new
gene complex for a new species, is 10‑10 (1 in 10 billion),
though in reality it is probably worse than 10‑40 (which is
why it is impossible to calculate without taking samples or using common sense). This
probability is lower than for the "first living cell" because the
gene complexes for advanced animals are longer and more complicated. The number 10‑10
is very, very generous to the theory of evolution. How Many Unique Gene
Complexes Per Unique Species? The next
assumption we must make is to calculate how many unique gene complexes are in a
typical unique species. Human DNA
has 30,000 gene complexes. The
"first living cell" would have had about 300 gene complexes. Thus, we have an increase of 29,700 gene
complexes going from the DNA of the "first living cell" to human DNA
(obviously assuming evolution, which is what we are trying to calculate the
probability of). However,
the gene complexes of human DNA are huge compared to the gene complexes of the
"first living cell" or even the first complex animal which was an
ancestor species of humans (assuming evolution), plus human DNA would have to
be far, far more complex. So we can
ignore the "first living cell" DNA or the DNA of the first complex
ancestor of humans. Thus, for all
practical purposes, we need to build 30,000 gene complexes from scratch, even
if we start with the first complex animal. Assuming
there are 3,000 unique species between the DNA of the first complex animal
(which is an ancestor of humans), and human DNA, the average "ancestor species" (i.e. a species which is on our evolutionary
tree) would have 10 unique gene complexes (30,000 divided by 3,000). In summary,
we will make these assumptions in our next calculation: 1) The
average "gene complex" of a complex species is 5,000 nucleotides. 2) The
probability of a randomly generated sequence of 5,000 nucleotides being able to
form a single, viable gene complex for a specific species: 10‑10 3) Each unique
species, of our ancestor species, has an average of 10 unique gene complexes. With these
generous assumptions, the probability of a new species "evolving" by
random mutations of nucleotides (which is the only way that the theory of
evolution can work) is: 10(‑10x10)
= 10‑100 This
probability is for one new species
using randomly generated and modified nucleotides from an existing species. This
probability applies to every one
of the unique species which have lived, and do live, on this earth. In other words, for every complex species
which has ever lived on this earth (including extinct species), there is a
probability of 10‑100 that this species was derived by random
mutations of nucleotides (actually this is an average). And even
this probability is very, very generous to the theory of evolution. There are
actually other factors which have been ignored which would be very damaging to
the theory of evolution if they had been included. For
example, consider the male and female issue.
When there is a new species, which has a male and female, the DNA (after the random mutations in each of
their germ cells) must be identical; meaning their DNA must
"align," meaning all the functional sections of the DNA must be in
the same order, in the germ cells of both the male and female, in every
generation, in order for them to have viable offspring. What this
means is that the probability that a male and female will have the same random
mutations in the same generation in the same location of earth is impossible. The 10‑100 probability does not
even begin to take this absurdity into account. Another
example is the morphing of the embryo algorithm (i.e. computer program) in the
DNA of each and every complex species which converts a single egg into a living
animal. Every time there is a physical
structural change in the species, the highly complex morphing of the embryo
algorithm must change in a very precise way in the male and female. This, by itself, is an insane probability. Multi-generational
issues are also ignored. Multi-species
issues are also ignored. In any
case, the 10‑100 applies to 3,000 ancestor species of humans. This means that the probability of human
evolution is about: 10(‑100x 3000) or 10‑300,000. A Consecutive Lottery It is
critical that the reader does not think of evolution as a single event with a
probability of 10‑300,000. For
example, if there are 3,000 species, between the first complex animal and human
DNA, then each of these ancestor species had
to be consecutive, meaning one after the other, because they are all our
ancestor species. Just like
our grandfather (our father's father) and our father cannot both be born in the
same year, our 3,000th ancestor species (starting with our oldest ancestor
species with complex DNA) must have existed prior to our 2,999th ancestor
species. Our 2,999th ancestor species had
to exist prior to our 2,998th ancestor species.
And so on. Thus, human
evolution, from the DNA of our oldest complex ancestor species to the DNA of
human beings, would be like winning "3,000 consecutive or sequential
(i.e. one after the other) lotteries,"
where the probability of each was 10‑100!!! In other
words, the probability of going from our 3,000th ancestor species to our 2,999th
ancestor species was 10‑100.
The probability of going from our 2,999th ancestor species to our 2,998th
ancestor species was 10‑100.
And note that our 2,999th ancestor had to completely exist before the
process of creating our 2,998th ancestor could even begin, as one example!! In other
words, we could not start to create our 2,998th ancestor species until after
our 2,999th ancestor species already existed, so essentially we have to start
the lottery over again to create our 2,998th ancestor species. Thus, after our 2,999th ancestor species
existed we could start a new lottery, with a probability of 10‑100,
of creating our 2,998th ancestor species. And so on. Thus, the
theory of evolution consists of 3,000 true "consecutive or sequential
lotteries," each with a probability of 10‑100. There is no word in the English
language to describe just how ludicrous the theory of evolution is!! The 10300,000
number is the number of atoms in 10299,980 Universes. Thus, the probability of the theory of
evolution, even when making very generous assumptions, is the same probability
as picking the single, correct atom from among 10299,980 Universes!! But even
the 10‑300,000 probability for the theory of evolution is
ludicrously generous because evolution must have "won" about 3,000
consecutive or sequential "lotteries," each with a probability of 10‑100!! The problem
of consecutive lotteries for the theory of evolution is "time." Not only is the probability of evolution
ludicrous for a Universe which is a trillion trillion
years old, on the planet Earth evolution had to occur (from the first complex
animal) in about 600,000,000 to 660,000,000 years. Would you
bet your life on winning a lottery which requires winning 3,000 consecutive
lotteries, each with a probability of 10‑100, in a period of
660,000,000 years? Do the math. Remember,
never has new genetic information or new genetic intelligence ever been
observed being created from random mutations of nucleotides. Now you know why. How Many Species? Let us
define a "species" as having a unique DNA structure, meaning a species has a unique set of gene
complexes, in the same order on their DNA, the same morphing of the embryo
algorithms, etc. How many unique
species have existed on this earth?
Scientists know of many millions of species which have lived on this
earth (counting plants and animals).
However, in these counts there are many examples of
"microevolution," meaning variation in a single "species,"
as defined above. The key
question is how many unique species have lived, and do live, on this earth? The answer will
be assumed to be about 10 million unique species. This includes living plants and animals
(including fish and other species in the deep ocean) and extinct plants and
animals (including extinct fish and other species in the deep ocean). This means
that in the 5 billion years evolutionists claim this earth has existed (most of
this time there was no life on earth, except single-celled organisms, according
to science); an insane probability of 10‑100 had to have happened
10 million times!!! Actually,
all of this had to happen in less than a billion years because we are starting
with animals with complex DNA (i.e. a "complex species" means there are
multiple types of cells which perform some coordinated function necessary for
life, specifically a circulating fluid). But it gets
worse. Each species,
whether living or extinct, would have needed unique ancestor species back to
the point they have a mutual ancestor species with humans or other
animals. We see in this case the need
for literally hundreds of thousands
of situations where 5 or 10 or 50 consecutive
lotteries must be won, which have nothing to do with human DNA. And this is being very careful to avoid any
duplication of ancestor species (i.e. no species is counted more than once). Are you beginning to see the inane absurdity
of the theory of evolution? A Murder Mystery #1 To
comprehend why the theory of evolution is scientific nonsense, let us consider
a murder mystery. Suppose a
person was murdered in a small town, a 4 hour drive from Paris, France, at
exactly 1 A.M. Central Standard Time, U.S.A., on a Thursday morning. Suppose for
some reason the French government wanted to frame me (i.e. Webster Kehr) for the murder. Thus, they
gathered hundreds of pieces of evidence which implicated me in the murder. Suppose
that I did not know the person who was murdered, in fact I did not know a single
person in the city where he lived. Nor
do I speak French. Yet, supposedly, there
was a ton of contrived "evidence" that I was guilty. How could I
prove my innocence? Suppose on
the week this person was killed, I was working 8 hours a day (from 7:30 AM to
4:30 PM, which includes a lunch break) in To prove my
innocence, I would prove that I was at work, as scheduled, every day in the
week the person was murdered. Let us
assume the following facts: 1) It would
take me 30 minutes to drive to the nearest large airport, the Kansas City
International airport (KCI). 2) I would
have to be at the airport at least 1 hour before the plane left, since it was
an international flight. 3) I would
have to change planes (there are no non-stop flights from 4) The
total flying time to 5) It would
have taken me 4 hours to drive from the Thus, to
get from Thus, it
would have taken me 37 hours to complete the trip to the city in France, murder
the man, and come back home. How much
time did I have? The answer is 15
hours. From 4:30 P.M. to 7:30 A.M. is 15
hours. I could not
have killed the person. I was innocent. A Murder Mystery #2 Now let us
take all the above facts, but in this case the person was murdered on a distant
planet, 5 light years away. How long
would it take for me to travel 5 light years, at 100,000 miles per hour? It would
take about 67,000 years to go
to the star and back. How could I travel for 67,000 years
in 15 hours? Again, I was innocent. Conclusions The problem
with the theory of evolution is time.
The scientific establishment has tried to make it appear that the theory
of evolution has had 600 million years to 1 billion years, since the first
complex animal. That is not
enough time. Even 600 trillion trillion trillion trillion years is not enough time. The theory of evolution is more like Murder
Mystery #2 than Murder Mystery #1. There
simply hasn't been enough time on this earth for the theory of evolution to have
occurred. Could you
win 3,000 "consecutive lotteries" in 660 million years, where the
probability of each lottery was 10‑100? Such a belief would be mathematical and
scientific nonsense. It is virtually impossible
you could win 3 "consecutive lotteries" in 660 million years. But even
the problem of winning 3,000 "consecutive lotteries" is just a small
tip of the iceberg for the theory of evolution. Winning
3,000 "consecutive lotteries" is just for human DNA. How about the DNA of millions of other unique
species and the "consecutive lotteries" each of them needed to have
"won," which did not include any duplication of ancestor species. You also
have problems with the male and female issue.
Both the male and female have to have DNA which aligns with each other
in order to have offspring. Thus, each
must have the same impossible mutations in
their germ cells, and the male and female must live in the same
geographical area and same time period.
This alone generates insane probabilities. Those who
support the theory of evolution might say that the same "external"
events caused the same mutations in the DNA of the male and female. This theory is totally absurd for many, many
reasons, but this book will not take the time to discuss these issues. The point
is that six-hundred million years is not enough time for evolution to have
worked. Even 600 billion years would not be
enough. Even 10100,000
years would not be near enough time for evolution to have occurred by random
mutations of DNA. Not even close. Do the
math. You will find out that adding a
few numbers to an exponent do not help the overall problem the theory of
evolution faces. Evolution
never happened, not on this earth or on any other earth, or on any other galaxy
or on any other Universe. This
Universe, the planets, and life on this earth were created by intelligent
beings, all under the watchful eye of God Himself or life was created by God
Himself. There is no other explanation
for the DNA of millions of different species of animals and plants. |